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Abstract 

The lattice energy of isolated, regular tetrathia- 
fulvalene stacks was minimized for a longitudinal slip 
of the molecules relative to each other at constant 
intermolecular separation and transverse slip. The van 
der Waals and repulsive interactions were calculated 
from atom-atom potentials. A simple expression is 
presented for the electrostatic interaction in neutral and 
charged stacks. This electrostatic contribution was 
calculated from CNDO/2  atomic point charges. The 
latter contribution proved to be negligible for stacks 
built up from neutral molecules. For these stacks the 
minimum of the lattice energy is achieved at a slip of 
0 .1-0 .2  A below the observed values. Eclipsed 
stacks, with zero slip, appeared to be only 3-35 kJ 
mo1-1 less stable than slipped ones. In stacks built up 
from positively charged molecules the van der Waals 
and repulsive contributions are dominated completely 
by the electrostatic interaction. These stacks tend to a 
structure with infinite slip. 
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Introduction 

The existence of segregated stacks of acceptor and 
donor molecules (Soos, 1974) is an important condition 
for high electrical conductivity and other one-dimen- 
sional properties of compounds like tetrathiafulvalene- 
tetracyanoquinodimethane, T T F - T C N Q  (Kisten- 
macher, Phillips & Cowan, 1974). In TTF compounds 
two different kinds of stacking are found. In the first 
(Kistenmacher, Phillips & Cowan, 1974; Cooper, 
Edmonds, Wudl & Coppens, 1974), the flat TTF 
molecules are slipped relative to each other along the 
longitudinal molecular axis by ~ = 1.6-1.7 A. In the 
second (Scott, La Placa, Torrance, Silverman & 
Welber, 1977; Wudl, Schafer, Walsh, Rupp, Di Salvo, 
Waszczak, Kaplan & Thomas, 1977), the molecules 
eclipse with fi _~ 0.0 A. In both kinds the slip, e, in the 
transverse direction of the short molecular axis is 
about 0.0 A. A range of 3.3 to 3.8 A is observed for 
the intermolecular separation, R. 

A second condition is the existence of partial charge 
© 1980 International Union of Crystallography 
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transfer, p, from the electron-donor to the electron- 
acceptor molecule (Soos, 1974). From the viewpoint of 
classical electrostatic or Madelung interaction (Metzger 
& Bloch, 1975) one can describe this in a uniform 
model, in which all molecules bear identical charges 
plus or minus p, or in a Wigner chain, in which some 
molecules are neutral and others are completely 
charge-transferred, monovalent ions. In pure TTF, all 
molecules are neutral and no charge transfer is 
observed. In TTF-TCNQ,  p = 0-59e (Metzger, 1977). 

It has been shown recently (Silverman, 1979a) that 
the energy of isolated TTF dimers exhibits a minimum 
for the eclipsed geometry only. However, this quantum- 
mechanical calculation conflicts with a packing 
analysis (Silverman, 1979b), which shows that only the 
slipped stacking geometry of TTF in TTF-TCNQ and 
in pure TTF is consistent with the close packing of hard 
spheres having atomic van der Waals radii. 

The atom-atom potential method (Kitaigorodskii, 
1973) can be considered to be of intermediate sophisti- 
cation between a close-packing analysis and a quan- 
tum-mechanical calculation. This method has been 
shown to be useful for the calculation of the lattice 
energies of TTF-TCNQ crystals (Govers, 1978;* 
Sandman, Epstein, Chickos, Ketchum, Fu & Scheraga, 
1979). Here, it is our aim to predict the observed TTF 
stack structures via this approximation, with a one- 
dimensional chain model. As far as we know no simple 
method exists for the calculation of the electrostatic 
interaction in chains built up from large numbers, of the 
order of Avogadro's number, of charged molecules. 
Therefore, we will also derive an expression for this 
interaction. This work precedes a more complete 
three-dimensional analysis via the atom-atom approxi- 
mation (Silverman & Govers, 1980). Therefore we are 
interested only in a simple calculation with no variation 
of R, e, atom-atom potential parameters and charge 
distribution models. 

Method 

The lattice energy, E, is considered to be a pairwise 
sum of the interatomic interactions, EkU, between the n 
atoms, i, of a central molecule in the stack and the n' 
atoms, j ,  of the z surrounding molecules, k (Govers, 
1978): 

g n R t 

E = ½ N ~ ~ ~ Ekij(rkij), (1) 
k l y  

with 

Ek~j(rkij) = -- AtU r-~i~ + Btu exp (--Cturku) + e~ej/rk~y. (2) 
In (1) the factor ½ is introduced to avoid double 
counting of pair interactions, N is the number of 

* The corrected values (in kcal mo1-1 = 4.19 kJ mo1-1) of  ~c~lc ~ e l e c t r  

in Table 2 of  this reference are - 0 . 0 4 ,  - 0 . 0 1 ,  +0.58 and +0.01, 
and in Table 3 - 0 . 3 8 ,  - 1.78, --9.09, -- 1.88 and -6 -35 .  

molecules in the stack and rku are the interatomic 
distances, which in our approach were calculated from 
the molecular geometry of TTF and from the value of 
the molecular separation, R = 3.47 A, observed in 
TTF-TCNQ (Kistenmacher, Phillips & Cowan, 1974). 
As transverse slip we used the model value e -- 0.00 A. 
The distance, b, between the centres of two neighbour 
molecules in the stack was calculated from the relation 
b 2 = R 2 + ~.  Therefore b varies with the longitudinal 
slip, & Fig. 1. 

The parameters Ato, Bto, Cto in (2) depend only on 
the six different types, tU, of interatomic pairs CC, CH, 
CS, HH, HS and SS, which exist for the C, H and S 
atoms of TTF. We used set 1 of Table 1 by Govers 
(1978). These parameters determine the van der Waals, 
Evdw, and repulsive, Ere p, contributions to the lattice 
energy and were used as previously, i.e. in combi- 
nation with summation limits of about 5.5 A yielding 
80% of the lattice energy (Govers, 1978). 

The parameters e I and ej in (2) are the point charges 
on the atoms i and j. These determine the electrostatic 
contribution, Eelectr, to the lattice energy. We used the 
CNDO/2 charge distributions for TTF ° (neutral) and 
TTF + (monovalent) molecules from the sets 1 and 4, 
respectively, of Table 3 by Epstein, Lipari, Sandman & 
Nielsen (1976).* The total electrostatic contribution to 
the chain energy cannot be calculated via a simple 
lattice sum of contributions eiej/rku, which is caused by 
bad convergence properties. We used the expression 

z, (Ne/b)[lnN--ln(½z'+ 1) 1], (3) Eelectr = Eelectr + 

with 
?I n r 

e = ~ ese j. (4) 
I J 

Z l  In (3) Eelectr is a direct sum of interactions eieJrki j 
between the atoms of a central molecule and those of z' 
neighbouring molecules. It was calculated in the normal 
way via (1). The quantity e in (3) and (4) is an 

* Note that the charge on H(2) of TTF + (set 4, Table 3) should 
be 0.0814 instead of  0.0184 (Epstein, 1978). 
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Fig. I. Nearest-neighbour molecules in a TTF stack; definition of  

intermolecular separation, R longitudinal slip, 6, transverse slip, 
~, and distance between the molecular centres, b. 
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intermolecular sum over the products of the charges on 
the atoms i and j .  For neutral TTF ° molecules this sum 

Z t is zero. Thus only Eelectr remains in (3). The derivation 
of (3) is given in the Appendix. 

An overall error of <5% in the calculated lattice 
energies is caused by the rapid summation cut-off of the 
van der Waals  and repulsive contribution, by the 
neglect of a 0.07 A shift of the position of the H-atom 
attraction and repulsion centre and by approximations 
in (3). This does not, however, influence the relative 
values of the lattice energies at different values of fi to a 
high degree. 

Calculations and results 

The calculated lattice energies as a function of ~ of 
stacks built up from neutral molecules are given in Fig. 
2 and Table 1. Within the physically interesting range 

Table 1. Lattice energy, E, electrostatic contribution, 
Eetectr, and the contribution Ess, of neighbour S atoms 
related by a translation, b, (Fig. 1 ) f o r  neutral I7"F 

stacks as a function of  the longitudinal slip, 

Energies are in kJ mol -l, ~ in A. 

E E e l e c t r  E s s  

0.0 --51.37 +0.80 +5.32 
0.2 -51.04 +0.80 +5.07 
0.4 -52.08 +0.75 +4.27 
0.6 -53.00 +0.71 +3.14 
0.8 -53.34 +0.63 +1.76 
1.0 -53.59 +0.54 +0.42 
1.2 --54.09 +0.50 -0.75 
1.4 --54.34 +0.42 -1.67 
1.6 -54.26 +0.33 -2.22 
1.8 -53.00 +0.25 -2.47 
2.0 -51.96 +0.21 -2.43 

of ~ three extrema are found in the E(6) curve. An 
absolute minimum o f - 5 4 . 4  kJ mol -t is found at c~-- 
1.54 A, about 0.06 and 0 . 1 9 / k  beneath the observed 
values of c~ in T T F - T C N Q  (Kistenmacher, Phillips & 
Cowan, 1974) and in TTF (Cooper, Edmonds, Wudl 
& Coppens, 1974), respectively. A relative minimum of 
- 5 1 . 5  kJ mo1-1 is obtained at ~ = 0 . 0 / k ,  i.e. at the 
eclipsed stack geometry. This minimum is close to a 
maximum o f - - 5 1 . 1  kJ mo1-1 at ~ = 0.2 /k. It might 
even be coalescent with this maximum in view of 
calculational inaccuracy. Both this relative minimum 
and the maximum are about 3.35 kJ mol -t  above the 
absolute minimum in the E(cS) curve, which is sym- 
metrical in + = 0 .0  A. 

The electrostatic contribution decreases from +0.8  
kJ mo1-1 at c~ = 0 . 0 / k  to +0.21 kJ mo1-1 at c~ = 2 .0 /k  
(Table 1). It shows a maximum at the eclipsed structure 
and no further extrema. However, it is so small that it 
does not influence the general form of the E ( ~  curve. 

A more detailed analysis of the contribution of close 
intermolecular contacts shows that the close contacts 
between S atoms, which are immediately above each 
other in the eclipsed stack structure (Fig. 1), can 
explain this feature to some degree. If we only count 
these SS contributions to the stack energy, a maximum 
of +5.32 kJ mol -t is obtained at c~ = 0-0 /~ and a 
minimum of - 2 . 4 7  kJ mo1-1 at about 6 = 1.8 A. (Table 
1). Other (close) contacts vary less drastically with & 
but change this SS curve extrema into the total E ( ~  
curve by their large number. In Fig. 3 the calculated 
electrostatic lattice energies are given as a function of 
the slip, & for a uniform and a Wigner-type stack, built 
up from (partly) charged molecules. 

The electrostatic energy of the uniform stack was 
calculated with a charge of p = +0.59e (Metzger, 
1977) on every molecule of the stack. A value of Eeleetr 
(p = 0.59e) = p2Eeleetr ( p  = le) was applied as we had 
to use the C N D O / 2  distribution of TTF+L From this 

- - 5 0 . 0  

T T F  0 

(kJ t o o l  - t )  

~, ~_ / ;  ,,. "-.,. /: 

o.o ,e. il --,- ~"I 2-0 

Fig. 2. Lattice energy, E, of TTF ° stacks as a function of the 
longitudinal slip, ~i, at R = 3.47 A, and e = 0.00 A. Solid curve: 
total lattice energy; dashed curve: van der Waals + repulsive 
contribution. 

+ 8 4 0 0  

Eelectr 

(kJ  m o l  - I )  

+4400 t 
0.0 

T T F 0 ' 5 9  

---... .  

I 
i i I i i i i I i i 

, 2.0 
~exp 

3 (A) 
Fig. 3. Electrostatic lattice energy, Eelectr, of TTF °'s9 (uniform) 

stacks and of TTF ° TrF +x (Wigner) stacks as a function of the 
longitudinal slip, & at R = 3.47 A and e = 0.00 A. 
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relation one immediately sees that the general form 
would not have changed if we had used other values 
ofp. 

The electrostatic energy of the Wigner stack was 
calculated for a stack with molecules charged alter- 
nately zero and + 1, i.e. for a mean charge transfer of 
p = 0.5e. Therefore we could apply directly the 
molecular charge distributions of TTF ° and TTF +1. 

g t 
The direct part, Eetectr, of (3) could be calculated in the 
normal way, but in the second part of (3) we now had 
to use the values N = ½ times Avogadro's number, 
½z' = 15 and b = 2(3.472 + t~2) 1/2 A .  By doing this, we 
have neglected the small contribution of the electro- 
static interaction between zero and +1 charged 
molecules in this second part. 

The van der Waals and repulsive contributions, 
which are identical for neutral and charged stacks in 
our method, appeared to be much smaller than the 
electrostatic contribution. These cause only small local 
extrema, which do not change the general form of Fig. 
3. Both curves of Fig. 3 show that the stacks tend to a 
structure with infinite slip as a consequence of the 
repulsion of the positive charges on the molecules. This 
fact is less surprising than the very high values of more 
than +4200 kJ mol -~, which are calculated for this 
repulsion. Furthermore, it appeared that the short- 

gt 
range contribution, Eeleetr , t o  the total energy, Eelectr, 
amounted to only 7 and 6% for the uniform and 
Wigner stacks, respectively. (See also Table 2 in the 
Appendix.) Therefore an analysis of close atomic 
contacts is not important in this case. A comparison of 
the energy of the Wigner stack (p = 0.5e) with the 
energy of a uniform stack with p = 0.5e instead of p = 
0.59e, showed that the Wigner stack was only 1% less 
unstable than the uniform one. 

Conclusions 

The huge values of the electrostatic energies calculated 
for (partly) charged TTF stacks clearly show the 
importance of the inclusion of interstack interaction. In 
real charge-transfer crystals there are equal amounts of 
positively and negatively charged stacks and the 
resulting total electrostatic energy is of the order of 
- 4 2  kJ mol -a (Govers, 1978) instead of more than 
+4200 kJ mol-L Therefore an isolated stack model can 
work only in TTF compounds with very small charge 
transfer or with no charge transfer at all. Yet our neutral 
TTF stack energy calculations show a minimum at only 
0.06 A beneath the observed value of 6 = 1.60 A in 
TTF-TCNQ.  The reason for this might be that the 
total electrostatic energy of T T F - T C N Q  is only 
slightly dependent on 3. The fact that this energy is 
slightly dependent on the charge distribution model 
(Metzger & Bloch, 1975; Epstein, Lipari, Sandman & 
Nielsen, 1976) seems to support this view. 

The slip predicted for the neutral TTF stack is about 
0.19 A beneath the observed value of ~ = 1.73 A in 
pure TTF. The reason for this could well be that in our 
calculation we have applied R, e values and a TTF 
molecular geometry as observed in TTF-TCNQ,  
which are slightly different from those observed in pure 
TTF. A more important contribution to this deviation 
is probably the influence of three-dimensional inter- 
stack van der Waals and repulsive interactions. The 
isolated stack energy, about - 5 4 . 4  kJ mo1-1, accounts 
for only 57% of the observed heat of sublimation of 
TTF (de Kruif & Govers, 1980; Sandman et al., 1979). 
This three-dimensional effect will be studied elsewhere 
(Silverman & Govers, 1980). 

The interstack interaction might be especially impor- 
tant for a calculation of the relative stability and 
realizability of eclipsed structures with respect to 
slipped stacks. In our present calculation the eclipsed 
structure in neutral TTF compounds is only 3.35 kJ 
mol -I less stable than the slipped one, but interstack 
interaction might decrease or increase this value. 

Anyhow, we feel confident that our simple a tom- 
atom approximation and the expression for the electro- 
static energy of charged stacks are valuable tools in the 
prediction of the structure of TTF compounds. This 
view is supported by the even more simple close- 
packing analysis by Silverman (1979b). In this analysis 
the R value of closest intermolecular approach obtains 
a minimum at 5 ~- 1-8 A and a maximum at 6 --. 0.0 A, 
at which the large S atoms are beside and straight 
above each other, respectively. This result is very 
similar to the contribution, Ess, calculated by us for the 
separate SS interaction as a function of di. Furthermore, 
the a tom-atom approximation seems to have some 
advantages over quantum-mechanical calculations. It 
can be applied easily to whole stacks instead of to 
dimers only and it seems to treat the closed-shell 
interaction more adequately than, e.g., a CNDO/2  
calculation, as the latter predicts an energy minimum 
for the eclipsed neutral TTF dimer (Silverman, 1979a) 
instead of a maximum. 

We thank J. Voogd, H. de Wit and J. L. Derissen of 
the Structural Chemistry Group, State University, 
Utrecht for their discussion of the derivation of the 
expression for the electrostatic stack energy. 

APPENDIX 

Consider a stack of N equidistant and parallel 
molecules, k' = 1 ... N, at a distance b from each other. 
Let Z = ½z' be the number of molecules which 
neighbour a certain central molecule, k' = m, in both 
directions of the chain and let Z be chosen so large that 
for more distant neighbours we can write 

Z Z  e~ej/rk' u = e /bk ' ,  (A1) 
i j  
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with e given in (4), Fig. 4. Then the electrostatic lattice 
energy of this chain is 

N - - Z  ~ m - -  1 

Eelectr=½ ~ [(e /b)  ~ (1/k ' )  
re=Z+2 M = Z +  1 

m - - Z  

+ X Z Z  elej/rk, u 
k ' = m - 1  I j 

m + Z  

+ Y YZeie/rk,~ 
k ' = r a +  1 I j 

N - - m  ] 

+(e/b)  Z ( 1 / k ' ) .  (A2) 
k ' = Z +  l 

The four contributions in (A 2) are shown in Fig. 4 and 
the factor ½ is introduced to avoid double counting of 
pair interactions. The expression is not quite exact as 
the sum over m extends from Z + 2 to N -- Z. 
Therefore it only holds for N >> Z. The same neglect of 
boundary effects is used in the further simplification of 
(A2) in combination with the Euler theorem (Hyslop, 
1959): 

m--1 
y ( 1 / k ' ) = l n ( m -  1 ) - l n ( Z  + 1), (A3) 

k ~ = Z +  1 

which holds within 4%0 if Z,  m ___ 30, and in 
combination with the Stirling approximation (Hyslop, 
1959) 

lnt(N-Z)t / (Z + 1 ) I ] = N I n N - - N ,  (A4) 

Table 2. Influence o f  the number o f  neighbours, Z, 
on the electrostatic chain energy, calculated by ( 3 ) f o r  
an eclipsed and charged TTF stack as specified in the 

text 

Eelectr ( p = 0"59) = (0"59) 2 Eelectr (19 = 1"0)is used. Both energies 
are in kJ mol -~. Z = ½z'. 

gl Note that even at Z = 1000, with a calculation of Eelectr ex- 
tending to neighbours at 3470 A in both directions of the chain, 
Eelectr amounts to only 13% of the total electrostatic contribution. 
At Z = 30, our choice, this amount is 6.5%. 

Z E~iectr(P=0"59) ln(½z'+ 1) Eeteetr (P= 0"59) 
2 +159.0603 1.0986 +7505.5738 
5 262.9679 1.7916 7512.7751 
8 322.6382 2.1972 7515"8758 

11 364.4492 2.4849 7517"5497 
30 490.6804 3-4340 7511.3671 

100 666"405 4"6151 7522.3021 
300 813.0104 5"7071 7516.5553 

1000 986.9565 6"9088 7522.8494 

k': I 2 m - Z  b rn m + Z  N - I N  
. . . . .  : : - ~. -- : _ _ _ . _  _ _ ~  

I II Ill 1V 

Fig. 4. Model of the derivation of (3) for the electrostatic energy, 
Eelectr, of a stack built up from charged molecules. I, II, III and 
IV are molecular groups which contribute interactions with a 
central molecule, m, as denoted in the four terms of (A2). See text 
for the definition of symbols. 

which holds almost exactly if Z ~ N and N is 
Avogadro 's  number. Substitution of (A3) and (A4)into  
(A2) then results in (3). 

We next have to show that (A 1) holds if Z > 30, for 
example. For a stack with b = 4.0 A, built up from flat 
centrosymmetrical molecules with a longitudinal 
diameter of about 8 A as observed in TTF,  the largest 
percentage deviation, bk' - rk, U, for a molecule at k'  = 
m + 30 amounts to _+7%, when the molecules are 
arranged in a direct line with each other. Thus for a 
symmetrical molecule these deviations counterbalance 
each other to a large degree. Moreover, the molecules 
are often far from being in a direct line with each other 
and only a small fraction of all rk, U has this largest 
deviation. Numerical calculations for eclipsed TTF 
stacks with p = 0.59, in a uniform model, with a 
C N D O / 2  charge distribution with R = b = 3.47 A, as 
described in the Method, and performed for various 
values of Z yield results as given in Table 2. These 
results, which were calculated via (3), show that 
already at Z = 5, the total electrostatic energy, Eeleetr , is 
calculated with an uncertainty of < 1.5 %0. 

References 

COOPER, W. F., EDMONDS, J. W., WUDL, F. & COPPENS, P. 
(1974). Cryst. Struct. Commun. 3, 23-26. 

EPSTEIN, A. J. (1978). Private communication. 
EPSTEIN, A. J., LIPARI, N. O., SANDMAN, D. J. & NIELSEN, 

P. (1976). Phys. Rev. B, 13, 1569-1579. 
GOVERS, H. A. J. (1978). Acta Cryst. A34, 960-965. 
HYSLOP, J. M. (1959). Infinite Series, p. 51. New York: 

Interscience Publ. Inc. 
KISTENMACHER, T. J., PHILLIPS, T. E. & COWAN, D. O. 

(1974). Acta Cryst. B30, 763-768. 
KITAIGORODSKII, A. I. (1973). Molecular Crystals and 

Molecules. New York: Academic Press. 
KRUIF, C. G. DE & GOVERS, H. A. J. (1980). In preparation. 
METZGER, R. M. (1977). d. Chem. Phys. 66, 2525-2533. 
METZGER, R. M. & BLOCH, A. N. (1975). J. Chem. Phys. 63, 

5098-5107. 
SANDMAN, D. J., EPSTEIN, A. J., CHICKOS, J. S., KETCHUM, 

J., Fu, J. S. & SCHERAGA, H. A. (1979). J. Chem. Phys. 
70, 305-313. 

SCOTT, B. A., LA PLACA, S. J., TORRANCE, J. B., 
SILVERMAN, B. n .  & "~VELBER, B. (1977). J. Am. Chem. 
Soc. 99, 6631-6639. 

SILVERMAN, B. D. (1979a). In preparation. 
SILVERMAN, B. n .  (1979b). In preparation. 
SILVERMAN, B. D. & GOVERS, H. A. J. (1980). In 

preparation. 
Soos, Z. G. (1974). Ann. Rev. Phys. Chem. 25, 121-153. 
WUDL, F., SCHAFER, D. E., WALSH, W. M. JR, RuPP, L. W., 

DI SALVO, F. J., WASZCZAK, J. V., KAPLAN, M. L. & 
THOMAS, G. A. (1977). J. Chem. Phys. 66, 377-385. 


